Novel Nano material Research group

Publication

Journals

  • Single-crystal growth
  • Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation
  • Joo Song Lee, Soo Ho Choi, Seok Joon Yun, Yong In Kim, Stephen Boandoh, Ji-Hoon Park, Bong Gyu Shin, Hayoung Ko, Seung Hee Lee, Young-Min Kim, Young Hee Lee, Ki Kang Kim, and Soo Min Kim. Science 362, 817-821 2018
  • We discover a method of synthesizing wafer-scale single-crystal (SC) hexagonal boron nitride (hBN) monolayer film. In contrary to traditional epitaxial growth, liquid gold substrate allows the self-collimation of circular hBN grains, eventually forming an SC hBN film on a wafer scale. SC hBN serves the growth template for SC-Graphene/hBN heterostructure and SC tungsten disulfide. This is the first…
  • 2D alloy
  • Tailoring Domain Morphology in Monolayer NbSe2 and WxNb1-xSe2 Heterostructure
  • ACS Nano 14, 8784-8792 2020
  • 2D material properties, including electronic and optical properties, can be adjusted through alloying. In this work, we dope NbSe2 with W to make a lateral heterostructure with semiconducting WSe2 on the inside and metallic NbSe2 on the outside. The each point of doping level is characterized by STEM (Scanning Transmission Electron Microscopy) and well correlated with optical (Raman, Photoluminesc…
  • Catalyst
  • Substitutional VSn Nanodispersed in MoS2 Film for Pt-scalable Catalyst
  • Frederick Osei-Tutu Agyapong-Fordjour, Seok Joon Yun, Hyung-Jin Kim, Wooseon Choi, Soo Ho Choi, Laud Anim Adofo, Stephen Boandoh, Yong In Kim, Soo Min Kim, Young-Min Kim, Young Hee Lee, Young-Kyu Han, and Ki Kang Kim. arXiv:2010.10908 2020
  • This work demonstrate the basal plane activation of 2D MoS2 via substituted V atoms as VSn unit in 2H-MoS2 lattice. The VSn units acts as acive sites and also charge transfer pathways for efficient hydrogen evolution.
  • Device application
  • Synthesis of hexagonal boron nitride heterostructures for 2D van der Waals electronics
  • Ki Kang Kim, Hyun Seok Lee, and Young Hee Lee. Chem. Soc. Rev. 47, 6342-6369 2018
  • This work reviews the recent progress of the large-area synthesis of hBN and other related vdW heterostructures via CVD, and artificial construction of vdW heterostructures and 2D vdW electronics based on hBN, in terms of charge fluctuations, passivation, gate dielectrics, tunneling, Coulombic interactions, and contact resistantces. The challenges and future perspectives for practical applications…
96. Atomistic mechanism of seeding promoter-controlled growth of molybdenum disulfide
Author
Hayoung Ko, Han Seul Kim, Muhammad Sufyan Ramzan, Seongjae Byeon, Soo Ho Choi, Ki Kang Kim, Yong-Hoon Kim* and Soo Min Kim*
Journal
2D Materials
Volume(Issue)
7(1)
Page
015013
Publication Date
2019.11.8
Project Number
IBS-R011-D1, 2018R1A2B2002302
Seeding promoters facilitate the nucleation and growth of transition metal dichalcogenides in chemical vapor deposition (CVD). However, sophisticated roles of seeding promoter remain unclear. Here, adopting triangular-shaped crystal violet (CV) consisting of nonpolar and polar parts as the seeding promoter, we study the role of seeding promoter for the growth of molybdenum disulfide (MoS2). We systematically control the geometrical configuration of CV on SiO2/Si substrate by changing the solvent polarity and find that it strongly affects the growth of monolayer or multilayer MoS2 domains via CVD. Monolayer MoS2 domains were predominantly grown on randomly lying-down CV configurations on SiO2/Si substrate, whereas multilayer MoS2 domains are synthesized at concentrated polar parts in CV micelle on the substrate. Density functional theory calculations reveal that the initial nucleation step for the MoS2 growth is the adsorption of S on CV and the most favourable S adsorption site is the polar part in CV. Furthermore, it is found that the CV adsorption to SiO2 is mediated by the polar CV part and additionally strengthened in the lying-down CV configuration. Enhancing the thermal stability as well as hindering the re-aggregation of CV at high temperature, the lying down CV configuration allows the predominant growth of monolayer MoS2. This work provides a general framework to understand the growth of MoS2 from aromatic seeding promoters.